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Abstract- Mass spectrometric profiles of peptides and proteins 
obtained by current technologies are characterized by complex 
spectra, high dimensionality, and substantial noise. These 
characteristics generate challenges in discovery of proteins and 
protein-profiles that distinguish disease states, e.g. cancer 
patients from healthy individuals. A challenging aspect of 
biomarker discovery in serum is the interference of abundant 
proteins with identification of disease-related proteins and 
peptides. We present data processing methods and computational 
intelligence that combines support vector machines (SVM) with 
particle swarm optimization (PSO) for biomarker selection from 
MALDI-TOF spectra of enriched serum. SVM classifiers were 
built for various combinations of m/z windows guided by the 
PSO algorithm. The method identified mass points that achieved 
high classification accuracy in distinguishing cancer patients 
from non-cancer controls. Based on their frequency of 
occurrence in multiple runs, six m/z windows were selected as 
candidate biomarkers. These biomarkers yielded 100% 
sensitivity and 91% specificity in distinguishing liver cancer 
patients from healthy individuals in an independent dataset.  

 

I. INTRODUCTION 

Mass spectrometric serum profiling was optimized for high-
throughput comparison of complex samples that allows 
discovery of biomarkers of diseases such as cancer [1]. 
Independent analysis of the results pointed out the importance 
of avoiding bias and the need for independent validation of 
results [2-4]. Improved study design and technology in 
second-generation studies continue to indentify biomarker-
candidates for variety of cancers [5-7]. This paper adds data 
preprocessing and feature selection methods to a growing 
number of improved tools for matrix-assisted laser 
desorption/ionization time-of-flight (MALDI-TOF) mass 
spectrometric identification of biomarkers in enriched serum. 

Mass spectra represent a complex signal consisting of 
electronic noise, chemical noise due to contaminants and 
matrix, and protein and metabolic signatures [8]. They also 
have a varying baseline caused, besides others, by matrix-
associated chemical noise or by ion overload. The latter refers 
to the high excess of ions derived from the matrix that can 
overload the detector [9]. This elevates the baseline from its 
ideal zero horizontal line. Previous quality-control 
experiments have suggested several measurement properties 
of current mass spectrometry technologies that must be 

accounted for in the analysis [10]. These properties include 
high dimensionality of the spectra, high coefficients of 
variation, and mass shift (measurement error). Thus, it is 
important to apply preprocessing methods that enable the 
recognition of spectral quality prior to using the spectra for 
biomarker discovery and sample classification. 

Data preprocessing methods such as smoothing, baseline 
correction, normalization, peak detection, and peak alignment 
improve the performance of mass spectrometric data analysis 
methods for biomarker discovery [9, 11]. The reason for this 
includes the substantial amount of noise and systematic 
variations between spectra caused by sample degradation over 
time, ionization suppression, and other parameters reviewed 
previously by [4, 12]. The data preprocessing methods are 
typically available in all software for operation of a mass 
spectrometer. The use of spectral comparisons for biomarker 
identification requires, however, optimization of these 
methods and a completely transparent data manipulation. 
Several groups proposed recently improved tools for data 
preprocessing and biomarker discovery as summarized briefly 
below. 

By smoothing the raw spectra, we can reduce the effect of 
some mass-per-charge (m/z) values that appear as peaks but 
may not be or are very hard to verify by independent 
experiments. Many smoothing algorithms are available to 
denoise raw signals including the well-known Savitzky-Golay 
filter that removes additive white noise [13] and wavelets [14].  

Baseline correction is important for minimization of 
background noise; drifting baseline introduces serious 
distortion of ion intensities without adequate correction. 
Several methods have been proposed for baseline subtraction. 
For example, Fung and Enderwick [15] employed a varying-
width segemented convex hull algorithm to subtract the 
baseline. Baggerly et al. [16] fitted a local median or local 
mean in a fixed window on the time scale. They also 
considered subtracting a “semimonotonic” baseline. Coombes 
et al. [14] estimated baseline by fitting a monotone local 
minimum curve to smoothed spectra. 

Normalization reduces variation in signal intensity between 
spectra. A commonly used normalization method for mass 
spectrometric data is rescaling each spectrum by its total ion 
current, i.e., the area under the curve (AUC) [11, 15]. Other 
common choices for the rescaling coefficient include the 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2005 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2005 to 00-00-2005  

4. TITLE AND SUBTITLE 
Analysis of MALDI-TOF Serum Profiles for Biomarker Selection and
Sample Classification 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Georgetown University,Lombardi Comprehensive Cancer Center,3970
Reservoir Road Northwest,Washington,DC,20057 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

7 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



spectrum median or mean. Alternatively, choosing the average 
AUC over all spectra as the rescaling coefficient can do a 
global normalization. A global optimization assumes that the 
sample intensities are all related by a constant factor. That 
means that the data distribution should not differ substantially 
from one spectrum to another.  

Peak detection deals with the selection of m/z values which 
display a reasonable intensity compared to those that appear as 
noise. Coombes et al. [14] applied a simple peak finding 
(SPF) algorithm that provides the locations of potential peaks 
and their associated left-hand and right-hand bases. They 
estimated signal-to-noise ratio (S/N) using wavelets for 
improved peak detection. Also, they introduced a method for 
coalescing neighboring peaks. 

Assuming appropriate mass spectral data preprocessing 
methods are used, biomarker selection can be addressed using 
various computational methods. One of the commonly used 
approaches is to apply statistical analyses that recognize 
differentially expressed m/z values between cases and controls 
with multiple subjects. For example, one can apply a two-
sample t-test method to compare the protein intensities at each 
m/z value in cases and controls. Zhu et al. [17] proposed a 
statistical algorithm that can select a subset of k biomarkers 
from the marker list that could best discriminate between the 
groups in a training dataset via the best k-subset discriminant 
method with high sensitivity and specificity. 

Computational intelligence has also been applied for 
biomarker discovery. For example, Petricoin et al. [1] used a 
combination of genetic algorithm (GA) and self-organizing 
clustering (GA-SOC) for variable selection. The GA-SOC, 
which is implemented in ProteomeQuest software, starts with 
hundreds of random choices of small sets of exact m/z values 
selected from the SELDI-TOF mass spectra. Each candidate 
subset contains 5 to 20 of the potential m/z values that define 
the spectra. The m/z values within the highest rated sets are 
reshuffled to form new subset candidates. The candidates are 
rated iteratively until the set that fully discriminates the 
preliminary set emerges. 

Koopmann et al. [18] applied successfully support vector 
machines (SVMs) in a modified form to proteomic profiling. 
Li et al. (2002) introduced unified maximum separability 
analysis (UMSA) algorithm, which incorporates data 
distribution information into structural risk minimization 
learning algorithm. UMSA is applied to identify a direction 
along which two classes of data are best separated. This 
direction is represented as a linear combination of the original 
variables. The weight assigned to each variable in this 
combination measures the contribution of the variable toward 
the separation of the two classes of data. They analyzed 
protein profiles of serum samples from patient with or without 
breast cancer. They reported that UMSA enabled the 
identification of three discriminatory biomarkers that achieved 
93% sensitivity and 91% specificity in detecting breast cancer 
patients from the non-cancer controls.  

In our previous work [19, 20], we proposed a novel 
computational method known as PSO-SVM that combines 
SVMs and particle swarm optimization (PSO) for optimal 

selection of m/z values from high resolution surface enhanced 
laser desorption ionization-quadrupole time-of-flight (SELDI-
QqTOF) spectra. In [20], we performed binning, 
normalization, baseline correction, peak identification, and 
peak alignment on SELDI-QqTOF spectra. The peak 
alignment method defines windows of m/z values that have 
variable width. The PSO-SVM algorithm is then applied to 
select the optimal m/z windows. We ran the algorithm 
multiple times and selected five m/z windows based on their 
frequency of occurrence. An SVM classifier that employs 
these five m/z windows as its inputs yielded 92% sensitivity 
and 90% specificity in distinguishing hepatocellular 
carcinoma (HCC) patients from matched controls. 

In this paper, the serum samples were enriched by 
denaturing ultrafiltration and desalting [21] on C8 magnetic 
beads (MB) [22]. The procedure disrupts protein-protein 
interactions and allows an efficient recovery of a low 
molecular weight (LMW) serum fraction starting with 25 µl of 
serum. The enrichment offers more peaks than unenriched 
SELDI-QqTOF or unenriched MALDI-TOF spectra [23]. This 
paper presents our analysis of MALDI-TOF spectra of 
enriched serum for biomarker discovery and sample 
classification. 

II. METHODS AND RESULTS 

A. Mass Spectral Data 

The incidence of HCC in the United States increases. Very 
high rates of HCC incidence are observed in Egypt where an 
epidemic of viral infections presents a serious health problem. 
The management of the disease would benefit from 
identification of biomarkers related to this disease. Serum 
samples of HCC cases and controls were obtained from 2000 
to 2002 in collaboration with the National Cancer Institute of 
Cairo University, Egypt. Controls were recruited among 
patients from the orthopedic fracture clinic at the Kasr El-Aini 
Hospital, Cairo, Egypt and were frequency-matched to cancer 
cases by gender, rural versus urban birthplace, and age [24]. 
Blood samples were collected by trained phlebotomist each 
day around 10am and processed within a few hours according 
to a standard protocol. Aliquots of sera for mass spectrometric 
analysis were frozen at -80oC immediately after collection till 
analysis; all measurements were performed on samples of 
second-time thawed serum. 

Eluted peptides in the enriched serum samples were mixed 
with a matrix solution (3 mg/ml α-cyano-4-hydroxycinaminic 
acid in 50% actonitrile with 0.1% trifluoracetic acid), spotted 
onto AnchorChip target (Bruker Daltonics, Billerica, MA), 
and analyzed using an Ultraflex MALDI TOF/TOF mass 
spectrometer (Bruker Daltonics, Billerica, MA). Each 
spectrum was detected in linear positive mode and was 
externally calibrated using a standard mixture of peptides. 
Denaturing ultrafiltration enriches LMW fraction of serum and 
plasma (Fig. 1). Removal of proteins greater than 50 kDa 
including albumin appears complete based on Coomassie 
staining; proteins smaller than 50kDa are also removed as 
shown by the SDS-PAGE in Fig. 1 (left). Fig. 1 (right) depicts 
the spectrum found after desalting (top spectrum) and after 



denaturing ultrafiltration (bottom spectrum). The enrichment 
improved the quality of the spectrum in the LMW region and 
provided over 300 peaks. Evidently, the enrichment (bottom 
spectrum) offers more peaks than an unenriched spectrum (top 
spectrum). 
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Fig. 1. Left: SDS-PAGE analysis of human plasma and serum. Lane 1 and 2, 

unfiltered plasma, Lanes 3 and 4, unfiltered serum, lane 5, enriched LMW 

plasma and lane 6, enriched LMW serum. 10 µg of total protein was applied 

per lane and visualized by Coomassie staining. Right: MALDI-TOF spectrum 

after desalting using C8 magnetic beads (top spectrum) and after denaturing 

ultrafiltration. (bottom spectrum). 

B. Reproducibility 

Our study used 62 replicate spectra to examine the 
reproducibility of MALDI-TOF mass spectrometry. Each 
spectrum consisted of ~136,000 m/z values with the 
corresponding ion intensities. The dimension of these high-
resolution spectra was reduced to 23,846 m/z values using the 
binning procedure that divides the m/z axis into intervals of 
desired length over the mass range 0.9 to 10 kDa. A bin size of 
100 parts per million (ppm) was found adequate. The mean of 
the intensities within each interval was used as the protein 
expression variable in each bin. Each intensity value was 
transformed by computing the base-two logarithm and found 
the mean log intensity value and standard deviation.  

The CV of the log-transformed intensity values in the 62 
reference spectra ranged between 4.1% and 22.9% with mean 
value of 10.5%. A heat map for 62 replicate spectra (Fig. 2) 
and spectra for three independently prepared samples of 
enriched LMW fraction of serum (Fig. 3) illustrate the 
reproducibility of MALDI-TOF MS. 

 

 
Fig 2. Heat map for 62 MALDI-TOF replicate spectra. 

 
Fig 3. MALDI-TOF spectra, three independently prepared samples of 

enriched LMW fraction of serum. 

C. Data Preprocessing 

We applied various methods to preprocess the raw MALDI-
TOF mass spectra. We began our analysis with outlier 
screening where spectra whose data distribution substantially 
deviated from others were removed. 14 of the 164 MALDI-
TOF spectra were excluded, leaving 150 (78 cases and 72 
controls) serum mass spectral profiles for further analysis. 
These outliers were singled out based on their deviation from 
the median ion current, median record count (number of mass 
points), and their alignment with pre-selected landmarks. 

Each spectrum was first binned with a bin size of 100 ppm, 
which reduced the dimension of the spectra from about 
136,000 m/z values to 23,846 bins over the mass range 0.9 to 
10 kDa. Figure 4a and 4b depict a typical raw spectrum of a 
healthy individual and the corresponding binned spectrum, 
respectively. On the horizontal axis are m/z values or bins and 
on the vertical axis are intensity measurements that indicate 
the relative ion abundance. As shown in the figures, the 
binning algorithm has removed some high frequency noise, 
thus smoothing the spectrum. Also, binning improves the 
alignment of multiple spectra (not shown).  

The baseline of each binned spectrum was estimated by 
obtaining the minimum value within a shifting window size of 
50 bins. Spline approximation was used to regress the varying 
baseline. The regressed baseline was subtracted from the 
spectrum yielding a baseline corrected spectrum. Spline 



regression estimates different linear slopes for different ranges 
of the m/z values. Eilers and Marx [25] applied the method for 
baseline correction of 2-D gel electrophoresis images. 
Furthermore, each spectrum was normalized by dividing it by 
its total ion current. In addition, the spectra were scaled to 
have an overall maximum intensity of 100. Fig. 4c shows the 
binned, normalized, and baseline corrected spectrum. 

For peak detection, a bin is identified as a peak if the sign of 
the intensity’s slope changes from positive to negative. Peaks 
with intensity below a pre-defined threshold-line were 
considered as noise and were discarded. We selected m/z 
values with reasonable intensity levels and discarded those 
that appeared as noise. Following outlier screening, binning, 
baseline correction, normalization, and peak detection, the 78 
HCC case and 72 control spectra were split into 100 training 
spectra (50 HCC and 50 normal) and 50 testing spectra (28 
HCC and 22 normal). The testing spectra were scaled based on 
the parameters used for scaling the training spectra. 

 To account for variation in the m/z location (drifts) in 
different spectra, two peaks were coalesced if they differed in 
location by at most 7 bins or at most 0.03% relative mass. This 
method was based on the ideas of Coombes et al. [14] who 
used this method for SELDI-TOF spectra, where they 
combined peaks if they fall within 7 clock ticks and differ by 
at most 0.3% relative mass. We applied this method on 
training dataset only and found 264 windows. Fig. 5 shows 
m/z windows found between 1730 and 1870 Da. For each 
spectrum, the maximum intensity within each window was 
found, yielding a 264 x 100 training data matrix. The same 
windows were used to quantify the peaks in the testing 
spectra, which resulted in a 264 x 50 testing data matrix. 

D. PSO-SVM 

The PSO-SVM algorithm can be used to identify optimal 
m/z windows from preprocessed mass spectra. While PSO 
selects subsets of predefined m/z windows as potential 
solutions, SVM classifiers are built for each potential solution 
generated by PSO. The prediction capability of the resulting 
SVM classifier on a validation dataset is used as a 
performance function for the PSO algorithm. Since SVMs 
provide good generalization capability in classification tasks 
and can be designed in a computationally efficient manner, 
they are an ideal candidate for use as a performance function. 

The training dataset is used to select m/z windows and build 
an SVM classifier. The validity of each classifier trained with 
the selected features is evaluated using the prediction accuracy 
of the SVM classifier in distinguishing cancer patients from 
non-cancer controls. SVM classifiers are built for various 
combinations of features until the performance of the SVM 
classifier converges or a pre-specified maximum iteration 
number is reached. 

Estimates of prediction accuracy are calculated by using the 
k-fold cross-validation and bootstrapping methods. In k-fold 
cross-validation, we divide the training dataset into k subsets 
of (approximately) equal size. We train the SVM classifier k 
times, each time leaving out one of the subsets from training, 
but using only the omitted subset to compute the prediction 
accuracy.  

 
(a) 

 
(b) 

 
(c) 

Fig. 4. MALDI-TOF spectrum of a standard serum sample processed by 

smoothing, baseline correction, and normalization. (a) raw ; (b) binned; and 

(c) binned, normalized, and baseline corrected spectrum. 

 

 
Fig. 5. Control spectra (black), case spectra (light), windows in the m/z range 

from 1.73 to 1.87 kDa. 
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100th iteration 

   

 
500th iteration 

 

In bootstrapping, instead of analyzing pre-specified subsets 
of the training dataset, we repeatedly select subsamples of the 
data. Each subsample is a random sample with replacement 
from the full training dataset. 

The PSO-SVM algorithm is used to identify the optimal m/z 
windows from a list of L potential m/z windows. The 
algorithm creates N vectors (particles), each consisting of n 
m/z windows that are randomly selected from L m/z windows. 
The algorithm evaluates the performance of each particle in 
distinguishing cancer cases from controls. This is carried out 
by building an SVM classifier for each particle and evaluating 
the performance of the classifier via the k-fold cross-validation 
or bootstrapping methods. The algorithm uses the most-fit 
particles to contribute to the next generation of N candidate 
particles. Thus, on the average, each successive population of 
candidate particles fits better than its predecessor. This process 
continues until the performance of the SVM classifier 
converges.  

The algorithm repeats the above steps multiple times and 
provides a list of selected m/z windows along with their 
frequency of occurrence. A frequency plot is used to estimate 
the optimal number of m/z windows. The frequency plot 
presents the number of occurrences versus the m/z windows 
sorted in the order of decreasing frequency. We considered as 
candidate biomarkers all m/z windows starting from the first 
until the frequency curve becomes flat (i.e. the change in 
frequency becomes low). These m/z windows are evaluated 
via testing dataset (i.e., independent dataset that was used 
neither for training nor for variable selection) to determine the 
generalization capability of the SVM classifier. 

We present as an example a single run to demonstrate how 
the PSO-SVM algorithm selects three markers (n=3) out of 
264 m/z windows (L=264) using 100 MALDI-TOF spectra. 
The number of particles in this example is 10 (N=10). Note 
that the algorithm searches in a continuous search space but 
the numbers are rounded to the nearest integer. The elements 
of a particle represent the variable set suggested by the 
particle. Each particle is used to build an SVM classifier. In 
this example, the performance of the SVM classifier is 
evaluated through the bootstrapping method that randomly 
splits the spectra (80% for building an SVM classifier and the 
remaining 20% for validation). This is repeated 500 times with 
resubstitution and the average prediction accuracy on the 
validation set is computed.  

Fig. 6 shows the variable sets selected and their prediction 
accuracy on the validation set at the 1st, 100th, and 500th 
iterations, respectively. The left panel depicts the location of 
the particles in a three-dimensional space. The tables in the 
right panel show the corresponding coordinates sorted in 
decreasing order of their prediction accuracy (only the top 
three and the bottom two variable sets among the 10 variable 
sets are presented). As shown in the figure, the particles 
converged to one location (240, 162, 135) after 500 iterations 
improving the prediction accuracy from 77% to 91%. This 
location corresponds to m/z windows 4644.9-4651.4, 2528.7-
2535.5, and 1863.4-1871.3. 

 

 

Fig. 6. Variable sets selected by the PSO-SVM algorithm and their prediction 

accuracy at the 1st, 100th, and 500th iterations. The figures in the left panel 

show the location of the particles in the three-dimensional space. Each table in 

the right panel shows the top three and the bottom two variable sets among the 

10 variable sets (particles) used by PSO, sorted in decreasing order of 

prediction accuracy. 

E. Biomarker Selection 

The purpose of this analysis is to identify optimal m/z 
windows or candidate biomarkers from the preprocessed mass 
spectral data. While peak detection deals with the selection of 
mass points with reasonable intensity and S/N ratio, the aim of 
biomarker selection is to identify mass points that can be used 
to distinguish between cancer patients and healthy individuals. 

We used the PSO-SVM algorithm to select candidate 
biomarkers from the 264 peak-containing m/z windows. In 
this study, we arbitrarily targeted selection of five m/z 
windows. The algorithm began with 100 particles where each 
particle consisted of 5 randomly selected m/z values from the 
264 windows (i.e., n = 5, N = 100, and L = 264). A linear 
SVM classifier was built for each particle via the training 
dataset. The prediction power of each particle (five m/z 
windows) was evaluated by measuring the performance of the 
SVM classifier in distinguishing the two classes through the k-
fold cross validation and bootstrapping methods. We used 
k=10 for this study. The most-fit particles contributed to the 
next generation of 100 candidate particles. This process 

Selected Variable Sets 
Accu. 

% 
 239 213 90 77 
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continued until the performance of the SVM classifier 
converged or a pre-specified number of iterations was reached. 
The algorithm was repeated 600 times, of which about half of 
the runs used the 10-fold cross-validation method and the 
other half used the bootstrapping method. Fig. 7 depicts the 
percentage of occurrence of m/z windows selected by the 
PSO-SVM. Note that the m/z windows are sorted in 
decreasing order of frequency and only the first 50 m/z 
windows are shown in the figure. Fig. 7 suggests that the first 
seven m/z windows are more frequently selected. Our 
TOF/TOF sequencing indicated that the first and the seventh 
m/z windows share the same sequence except for one amino 
acid. Thus, our subsequent analysis considered only the first 
six m/z windows. These six m/z windows yielded 100% 
sensitivity and 91% specificity in distinguishing liver cancer 
patients from healthy individuals in the testing dataset. Fig. 8 
shows the box plot for the six m/z windows identified by the 
PSO-SVM algorithm. As shown in the figure, each of the six 
m/z windows is statistically significant candidate biomarkers.  
 

 
Fig. 7.  Frequency of occurrence of m/z windows in 600 PSO-SVM runs for 

preprocessed spectra sorted in decreasing order of frequency (only the first 50 

m/z windows are shown). 

 

To examine the effect of data preprocessing on biomarker 
selection and sample classification, we performed biomarker 
selection using spectra that were binned and normalized, but 
not baseline corrected. 292 m/z windows were found from 
these spectra using our peak detection and alignment methods 
described before. The increase in the number of m/z windows 
is attributed to features that were not baseline corrected. The 
PSO-SVM algorithm was run 200 times with 100 particles to 
select 5 m/z windows out of 292 (i.e. n = 5, N = 100, and L = 
292). The resulting frequency plot (Fig. 9) provided 5 
biomarkers, of which the top 3 were very close to those found 
in the previous experiment. These 5 candidate biomarkers 
yielded 89% sensitivity and 86% specificity. This is 
significantly less than the prediction performance obtained 
when baseline correction was used in data preprocessing. To 
perform a fair comparison with the previous experiment, we 
tested the first six m/z windows from Fig. 9. However, the 
addition of the sixth m/z window did not improve the 
prediction accuracy. This shows that baseline correction has 
an impact in selecting biomarkers that provide improved 
sample classification. 

 
Fig. 8.  Boxplots for the six m/z windows identified by the PSO-SVM. The 

boxplots show the distribution of each m/z window for HCC cases and normal 

using in both training and testing datasets combined. 

 

 

Fig. 9.  Frequency of occurrence of m/z windows in 200 PSO-SVM runs for 

non-baseline corrected spectra, sorted in decreasing order of frequency (only 

the first 50 m/z windows are shown). 

F. Sample Classification 

We applied three classification algorithms, k-nearest 
neighbor (KNN), linear discriminant analysis (LDA), and 
SVMs to build classifiers. For comparison, we used three sets 
of features as inputs to the classifiers: all m/z bins, all m/z 
windows, and the six m/z windows selected by the PSO-SVM 
algorithm. Table 1 shows the sensitivity and specificity of the 
three classifiers in distinguishing HCC patients from healthy 
individuals in the testing dataset. Over all, the classifiers that 
used the six m/z windows performed better than those that 
used all m/z bins and m/z windows. 

 
TABLE 1 

 PREDICTION ACCURACY OF THREE  CLASSIFIERS ON THE TESTING DATASET. 

23,846 m/z bins 264 m/z windows 6 m/z windows Classification 
Methods Sen. Spec. Sen. Spec. Sen. Spec. 
KNN (K=3) 96 77 96 73 93 91 

LDA 89 91 89 95 98 92 
SVM 93 91 93 86 100 91 

p= 3.4x10-16 
p= 5.1x10-6 

p= 8.8x10-6 p= 2.3x10-5 

p= 2.x10-5 p= 1.0x10-11 



III. CONCLUSIONS 

This paper presents computational methods for 
preprocessing of mass spectral data, biomarker selection, and 
sample classification. Together, PSO and SVM are applied to 
identify candidate biomarkers from preprocessed MALDI-
TOF spectra of enriched serum. The biomarkers distinguish 
cancer patients from non-cancer controls with high sensitivity 
and specificity. The PSO is used here to select a parsimonious 
subset from a large set of features. Since the particles contain 
discrete information only, we are currently investigating 
discrete methods such as ant colony optimization. 
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